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ABSTRACT

This paper, the first of a two-part series, presents results ofan unsteady rotordynamic

analysis of a long-bearing squeeze film damper executing circular centered orbits

using a fluid circuit approach. A series of nodes and branches represent the

geometry of the flow circuit. The mass and momentum conservation equations are

solved to predict the pressure distribution in the squeeze film. The motion of the

bearing is simulated by the variation of geometry within the flow path. The modeling

methodology is benchmarked against published experimental long-bearing squeeze

film damper test results. The model provides good agreement with the experimental

damping coefficient.

Nomenclature

C Squeeze film damper radial clearance (difference in radii)

Cp = gcoR2/C z Pressure conversion factor

C, = -f/e Dimensionless direct damping coefficient

d Damper journal diameter



Dr = f_/e Dimensionlessdirectinertiacoefficient

e Dynamiceccentricity(orbit radius)

L Damperjournal length

rh Massflow rate

p Localpressurewithin thesqueezefilm region

r Radialcoordinate

R Damperjournal radius

Re = po3C2/p. Reynolds number

z Axial coordinate

= e/C Eccentricity ratio (dimensionless orbit radius)

0 Circumferential coordinate

_t Fluid absolute viscosity

p Fluid density

xf Shear stress

co Frequency of damper journal (whirl frequency)

Introduction

Squeeze film dampers (SFD) have been used to provide damping in high speed

rotating machinery with rolling element bearings for years. Extensive research has

been performed both experimentally and analytically to examine the effects of

geometry, cavitation, Reynolds number, etc. on squeeze film damper pressures and

forces. The experimental work of Jung et al."2 examined the pressure distributions



andforcecoefficientsfor asqueezefilm damperexecutingcircularcenteredorbits for

both open ended (short bearing) and partially sealed (long bearing) configurations.

Analytical, circular-centered orbit, SFD models have been published for a variety of

Reynolds numbers for both long bearing (axial flow neglected) and short beating

(circumferential flow neglected) assumptions. Analytical work by San Andres 3-6and

Tichy 79 addressed the effects of fluid inertia on both short and long bearing squeeze

film dampers, and the effect of turbulence on short bearing squeeze film dampers.

Recently, Schallhorn, et al. t2, described a fluid circuit approach for modeling long

bearing squeeze film damper rotordynamics. In this paper, a steady state modeling

technique, utilizing a fluid network code, was described and the technique was

benchmarked against published experimental data. That modeling technique has been

extended to an unsteady model of the damper by Schallhorn 13.14

This paper presents the results of the unsteady modeling for a long bearing squeeze

film damper executing circular orbits. Comparisons of the unsteady analytical

predictions to the experimental work of Jung et al. 2 are presented.

Fluid Flow Code

A general purpose, one-dimensional, network flow analysis computer code was

chosen as the platform for SFD modeling I°. The code uses a series of nodes and

branches to define a flow network. Nodes are positions within the network where

fluid properties (pressure, density, etc.) are either known or calculated. Branches are

the portions of the flow network where flow conditions (geometry, flow rate, etc.) are



known or calculated.The codeusesa finite volumeapproachwith a staggeredgrid.

This approach is commonly used in computational fluid dynamics schemes

(Patankar15,Patankarand KarkiJ6). The staggeredgrid approachusesoverlapping

control volumeswherethe conservationof massandthe conservationof momentum

arecalculatedin separatecontrol volumes. For a conventionalgrid whereonly one

control volumeis usedfor bothscalarandvectorquantities,interpolationis required

in formulating the conservationof the scalarquantitiesat the edgesof the control

volume andnumericalerrorsresult. For a staggeredgrid, however,massflow rates

areavailableat the surfaceof the continuitycontrol volume anddo not haveto be

interpolated.

Governing Equations

The primary governingequationsusedin this analysisarethe continuity momentum

equations. Additionally, two auxiliary equationsare necessaryfor closureof the

unknownvariables.Theseauxiliary equationsconsistof the energyequationandthe

equationof state.Equations1and2 aretheunsteadygoverningequationsusedin the

analysis. Equation 1 is the unsteadycontinuity equationfor the flow into a node,

where _ ¢n_,is the summationof flow into anodethroughthebranchesconnecting

to it, E rhoutis thesummationof flow outof a nodethroughthebranchesconnecting

to it and riasourccis a masssourceterm (whichaccountsfor anyothermassflow into

or out of the node). Equation2 representsthe one-dimensionalconservationof

momentumfor a branchin the flow network, whereAp is the pressure difference



acrossthebranch,Acros s Sectio. is the cross-sectional area, L is the flow path length in a

segment of the damper, 9 is the density of the fluid, u is the fluid velocity, v is the

normal velocity of the inner segment of the damper, A,o_ma_is a segmented area of the

inner race corresponding to its normal velocity, -of is the shear stress and Ashe_r is the

shear area.

Zlilin + I'hsource- Zl'iqout = (mr- mt-At /?,t )cv (1)

A(rhL)
+ iOV(Uinnersegment- Ufluid)A normal=-Across SectionAp- "l:fAshear (2)

At

Equations I and 2 are solved in a simultaneous solution iterative scheme (Newton-

Raphson scheme) in order to obtain the branch flow rates and node pressures.

In order to obtain the mass resident in a node at a given time, an additional equation is

necessary. The equation chosen to satisfy the unknown resident mass was the

generalized equation of state; however, temperature is necessary for the state

equation. In order to satisfy the requirement for temperature in the state equation, the

energy conservation equation is used. Equation 3 is the energy equation used in the

code, where h is the enthalpy of the fluid (from which temperature can be obtained)

and 0Source is any additional heat source added to the fluid. Note that the term,

pA norma_V,represents the work done on the fluid by the inner segment of the damper



(i.e. thework doneon a fluid by a moving boundary).Equation4 is the generalized

equationof stateusedin the code,whereR is the gasconstantof the fluid, T is the

temperatureof thefluid andZ is thecompressibilityof thefluid.

Z riainhin+ QSource+ PAnorma,V- Z rhouthout

_ [m(h - P] It - [m(h - P)]t-_xt (3)

At

pV
m - (4)

RTZ

Unsteady Long Bearing Squeeze Film Damper Modeling

The model used in the analysis is shown schematically in Figure 1. In the analysis,

the bearing remains wrapped; however, curvature is neglected since the clearance to

radius ratio is small (-1/40). This model varies from prior steady state modeling

performed by the authors _2. The motion of the inner race of the damper is simulated

by the variation of the geometry of the flow path, as is illustrated in Figure 2. This

geometry variation generates a pressure variation around the circumference of the

damper. For rotordynamics applications, the pressure distribution of the fluid circuit

model is integrated to obtain the radial and tangential forces of Equations 5 and 6.

27t

Fr = _0PAnormal cos0d0

27t

Ft = _0 pA normal sin OdO

(5)

(6)



In a dimensionlessform, the radial and tangential forces are calculated using

Equations7 and 8, where Cp is the pressure coefficient defined in the nomenclature.

_ P cos0d0

2n p

ft = .Io _ sin OdO

(7)

(8)

In rotordynamic models, these force components are represented by rotordynamic

coefficients. These coefficients are analogous to the mass, damping and stiffness

terms for a spring-mass-damper system. For an uncavitated squeeze film damper, the

only two coefficients which occur are a radial inertia (or added mass) term, D r, and a

circumferential damping term, C,. In order to compare with published experimental

results 2, the damping and inertia coefficients are normalized by the eccentricity ratio

and pressure coefficient, equations 9 and 10. Equation 9 is the non-dimensional

circumferential damping coefficient and Equation 10 is the non-dimensional radial

inertia coefficient.

C. = -fete (9)

Drr= f,Jt3 (10)



Squeeze Film Damper Experimental Benchmark

The experimental results of Jung, et aL 2 were used to validate the modeling

methodology. The experimental work simulated a long bearing SFD by using an O-

ring seal on one side of the bearing, and a serrated piston ring on the other side of the

bearing to limit axial flow. A Reynolds number of 49.0 and an eccentricity ratio of

0.82 were chosen for comparison as the data indicates that cavitation was not present.

Results

Figure 3 shows the pressure profile of the benchmark squeeze film damper model

compared with Jung's 2 experimental results. The pressure has been non-

dimensionalized using equation 16 for comparison with Jung's published data.

- P - P (11)
Prefere,c_ Cp Re pR2 e02

The predicted pressure profile follows a similar trend as the experimental data. The

predicted pressure profile deviates from the experimental results in the low pressure

region; however, the model is able to predict the phase shift observed in the

experimental benchmark, unlike an earlier published steady state model '2. The

rotordynamic coefficients for the benchmark model are presented in Table 1, along

with Jung's experimentally derived coefficients. As Table 1 indicates, the damping

coefficient predicted using the unsteady model lies just inside of the uncertainty band

of Jung's experimental data. It should be noted that the uncertainty analysis derived



in reference13 is very conservative (in favor of Jung, et al.); therefore, the unsteady

model prediction is most likely to be well within the actual uncertainty band if all

error sources were accounted for. The unsteady model dramatically over predicts the

inertia coefficient compared to Jung's experimental results (unlike the steady state

model which substantially under predicts the inertia coefficient). Figure 4

demonstrates the periodic nature of the model. The pressure profile shown in Figure

4 follows the variation in the clearance during the orbit (Figure 2); therefore verifying

that for circular centered orbits, any snapshot in time should produce the same

rotordynamic coefficients.

Parametric Studies

A set of parametric studies was performed on the unsteady model to observe the

behavior of the model under various conditions for circular centered orbits. The first

parametric study examined the variation of the Reynolds number for a fixed orbit

size. The second parametric study examined the variation of orbit size for various

Reynolds numbers.

Parametric Study on Reynolds Number for Fixed Orbit Size

In order to compare the unsteady model with the results of the benchmark

experimental work 2, a parametric study on the prediction of rotordynamic coefficients

over a range of Reynolds numbers was performed. This study was carried out for the

following Reynolds numbers: 15, 25, 35, 49 and 75. Figure 5 shows the



dimensionless

respectively.

pressure profiles for Reynolds numbers 15, 25, 35, and 75,

Figures6 and7 showthe coefficientspredictedby this parametricstudycomparedto

Jung'sexperimentaldataandhis prediction. In Figure 6, the unsteadymodelover-

predicts the dampingcoefficient by - 10-15%,when comparedwith the test data

(consideredexcellentagreementin rotordynamics). It is noted, however,that the

experimentaldatahassignificant scatterandthe precisionuncertaintyhasnot been

includedin theuncertaintyestimate.Themodelpredictionof the dampingcoefficient

is an improvementoverJung'sanalyticalprediction. As Figure7 shows,theunsteady

modelover-predictsthe inertiacoefficientcomparedwith theexperimentaldata. The

reason for this over prediction is the difference between the predicted and

experimentalpressureatthepositionof lowestpressure(seeFigure3 for 0 < 0 < 1).

Parametric Study on Orbit Size for Various Reynolds Numbers

A parametric study was performed to examine the effect of orbit size (orbit radius) on

the prediction of rotordynamic coefficients. Three orbit eccentricity ratios (_) were

chosen for the study: _ = 0.25, 0.50, and 0.82, respectively. Recall that e = 0.82 is the

eccentricity ratio of the benchmark case. Figures 8 and 9 are the dimensionless

pressure profiles for eccentricities of _ = 0.25 and e = 0.50 at three Reynolds

numbers: 15, 49, and 75, respectively. Figure 10 is an overlay of the pressure profile

for the three orbit sizes at a Reynolds number of 49. As orbit size decreases, the

10



circumferentialpressurevariationreducesandbecomeslessskewed(thecurvatureon

the low pressureend resemblesthat of the high pressureend). As a result, the

dampingcoefficientandforcedecreasewith decreasingorbit size.

The predicteddimensionlessrotordynamiccoefficientsareshownin Figures 11and

12. Figure 11 illustratesthat the dimensionlessdampingcoefficient increaseswith

increasingorbit sizeand Reynoldsnumber. In Figure 12, the dimensionlessinertia

coefficientdecreaseswith increasingorbit, theoppositeof damping. However,in the

definitionsof thesecoefficients,the eccentricityratioappearsin thedenominator(see

Equations9 and 10). It is this division by e which causesthe reversal in order

betweenFigures11and 12; thereforetwo additional figures(Figures 13and 14)are

provided to illustrate the non-dimensionaltangential and radial forces (which

correspondto thedampingandinertia forces,respectively,seeEquations7 and8).

Figure 13 further illustratesthat the tangential(i.e. damping)force increaseswith

increasingorbit size. This result is expectedbasedupon rotordynamictheory6. In

Figure 14, however, the effect of orbit size on the radial (i.e. inertia) force is

inconclusive,sincethe orbit sizedoesnot appearto correlatewith the radial force.

This lack of correlation is most likely due to the over-prediction of the low pressure

region, as was seen in the comparison between the unsteady GFSSP prediction and

experimental data for the benchmark case (Re = 49, ed = 0.82).

11



Conclusions

An unsteady long bearing squeeze film damper (SFD) rotordynamic analysis has been

developed and successfully implemented. The approach uses a general one

dimensional fluid flow code in which shear stress is calculated using friction factors.

The motion of the rotor is simulated by variation of the geometry of the flow circuit

and accounting for the affect of a cross inertial term in the momentum equation due to

this geometry change. Results show that the unsteady modeling technique works over

a wide variety of conditions. Reynolds numbers ranging from 15 to 75, and

eccentricity ratios ranging from 0.25 to 0.82 were examined. Results of a benchmark

model provided good agreement with experimental data (Jung, et aL, 1991b) for the

prediction of the damping coefficient. The unsteady prediction of the damping

coefficient varied less than 14% from experimental results, when experimental

uncertainty is neglected. The unsteady damping coefficient results are within the

error band when uncertainty is accounted for. The inertia coefficient is over-predicted

by a factor of-2 compared to the benchmark case.

A parametric study using the benchmark geometry for a variety of Reynolds numbers

has been performed. This study shows that the damping coefficient prediction falls

within the uncertainty band of Jung's experimental data, an improvement over Jung's

own analytical predictions.

A second unsteady model parametric study was performed to observe the damper

performance at various eccentricity ratios for a range of Reynolds numbers. The

12



variation of the eccentricity ratio has a large effect on the predictions of the damping

(tangential) force component. As the eccentricity ratio increases, the damping force

increases. However, the effect on the inertia (radial) force component is inconclusive.

Further experimental investigation is necessary to determine the radial force variation

with eccentricity ratio and confirm the predictions of the damping force.

Although the predicted radial and tangential forces may be comparable in magnitude,

a typical rotor system will have many other sources of radial force (probably of

greater magnitude than that of the damper); however, the system may not have any

other source of tangential force approaching the magnitude provided by the damper.

In conclusion, it must be noted that the principle purpose of a squeeze film damper is

to provide a damping (tangential) force to a rotordynamic system, not an inertial

(radial) force. An unsteady analysis which can accurately predict the damping force

over a variety of operating conditions is a valuable tool for rotordynamic analysis.
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